I.
Class Overview

A. Board
The Board class stores almost all the data for the game in progress. It stores the representation of the board, the various hash tables, and all sorts of look-up tables, and other information related to the move search (like the history heuristic and killer-move heuristic information.)

The Board class contains the functionality for move searching, in the functions SearchRoot, Search, QuiescentSearch, and Think. The Board class performs evaluations of board positions with the Evaluate function.

B. MovementList
A MovementList object stores a set of moves. All making and unmaking of moves is performed by the MovementList class. Put another way, any and all changes to the Board's piece location data, etc., should only be changed by the MovementList class.
This class also initiates move generation, and performs move ordering.

There are several different MovementLists, all contained inside the Board class. First, there is an array of MovementLists (called movementLists) which hold all moves while the move-search is being conducted. The index of the array is the search-depth at which the moves were generated and are being searched. There is also another MovementList called legalUserMoves. This is exactly as it sounds; this list is filled with the legal moves a user may make. It is filled just before it is the user's turn to move, and all illegal moves are filtered out (moves which put the King in check, or leave it in check.)

The final MovementList is the historicalMoves. Unlike the other move lists, which hold all the possible moves from a given position, this one is different. This list holds the sequence of moves, starting from the beginning of the game, which have actually been made. When the user wants to make a move, or the search has completed and the computer wants to make a move, this is the MovementList that actually performs the move. When a move is taken back, this list does that also.

C. Game

The game class stores the information about the rules for the specific game/variant being played. Game is an abstract base class, and a Game sub-class is always used. This class contains several virtual functions which must be overloaded to add any special rules for a given game. For example, the ChessGame class, which handles Orthodox Chess and several similar variants, adds the Castling and En Passant functionality. The Board class has support for all other rules of standard chess: moves, captures, draw by repetition,
50-move draw rule, promotion …

Also, in overloading the Game class, usually the AdjustEvaluation function is overloaded, so the evaluation of board positions can be "tweaked" for a given game to encourage sensible opening, or the like. The Board's built-in evaluation function already knows how to consider the following: piece's material values, piece-square tables, pawn structure, king tropism, and a really, really simple king safety evaluation.

D. PieceType

This class defines the material value, movement capabilities, and other characteristics for a given type of piece. Only one object of the PieceType class is ever created for any given type of piece; in other words, there is only one object of class OrthodoxRook (a sub-class of PieceType) created, not one for each rook on the board, and not one for white-rook and one for black-rook.

E. Piece

The Piece class stores information about a piece, such as which type it is, and whether or not it has been captured. One object is created for every piece in play. A piece has a number of pre-defined flags, such as HAS_MOVED, HAS_MOVED_TWICE, and HAS_CASTLED.
